LEDController/internal/patterns/plasma.go

158 lines
3.4 KiB
Go
Executable File

package patterns
import (
"math"
)
type RGBcolor = [3]byte
func floatColorToIntColor(val float64) byte {
return byte(val*256 - 0.5)
}
func plasmaRGBFromVal(val byte) (byte, byte, byte) {
var r byte
var g byte
var b byte
if val < 85 {
r = val * 3
g = 255 - r
b = 0
} else if val < 170 {
b = (val - 85) * 3
r = 255 - b
g = 0
} else {
g = (val - 170) * 3
b = 255 - g
r = 0
}
return r, g, b
}
func LinearPlasma(l int) []byte {
line := make([]byte, l*3)
for i := 0; i < l*3; i += 3 {
val := byte(i % 256)
r, g, b := plasmaRGBFromVal(val)
line[i] = r
line[i+1] = g
line[i+2] = b
}
return line
}
func linearFromVal(val byte) (byte, byte, byte) {
var r byte = val
var g byte = 0
var b byte = 0
return r, g, b
}
func positiveModF(val float64) float64 {
_, val = math.Modf(val)
if val < 0 {
return val + 1.0
}
return val
}
func colorPlasmaFromFloatVal(val float64) (byte, byte, byte) {
var r byte
var g byte
var b byte
val = positiveModF(val) * 3.0
if val < 1.0 {
r = floatColorToIntColor(val)
g = floatColorToIntColor(1.0 - val)
b = 0
} else if val < 2.0 {
b = floatColorToIntColor(val - 1.0)
r = floatColorToIntColor(1.0 - (val - 1.0))
g = 0.0
} else {
g = floatColorToIntColor(val - 2.0)
b = floatColorToIntColor(1.0 - (val - 2.0))
r = 0.0
}
return r, g, b
}
var palletteOffset float64 = 0.0
func PlasmaPanel(w int, h int, speed uint16) [][]RGBcolor {
grid := make([][]RGBcolor, w)
for i := 0; i < w; i++ {
grid[i] = make([]RGBcolor, h)
}
// pbrook didn't say what DT is for... so it resolves to 0.05
palletteOffset -= 0.05 / 1.0
if palletteOffset < 0 {
palletteOffset += 1.0
}
offset := 0.5 // center offset
scaleW := math.Pi * 2.0 / float64(w)
scaleH := math.Pi * 2.0 / float64(h)
for y := 0; y < h; y++ {
for x := 0; x < w; x++ {
u := math.Cos((float64(x) + offset) * scaleW)
v := math.Cos((float64(y) + offset) * scaleH)
j := math.Cos(offset * scaleW) // 2D - No Z
e := (u + v + j + 3.0) / 6.0
r, g, b := colorPlasmaFromFloatVal(palletteOffset + e)
var rgb [3]byte
rgb[0] = r
rgb[1] = g
rgb[2] = b
grid[x][y] = rgb
}
}
return grid
}
func singleColorPlasmaFromFloatVal(val float64, baseColor RGBcolor) (byte, byte, byte) {
var r byte
var g byte
var b byte
val = positiveModF(val)
r = byte(math.Trunc(float64(baseColor[0]) * val))
g = byte(math.Trunc(float64(baseColor[1]) * val))
b = byte(math.Trunc(float64(baseColor[2]) * val))
return r, g, b
}
func PlasmaPanelSingleColor(w int, h int, speed uint16, baseColor RGBcolor) [][]RGBcolor {
grid := make([][]RGBcolor, w)
for i := 0; i < w; i++ {
grid[i] = make([]RGBcolor, h)
}
palletteOffset -= 0.05 / 1.0
if palletteOffset < 0 {
palletteOffset += 1.0
}
offset := 0.5 // center offset
scaleW := math.Pi * 2.0 / float64(w)
scaleH := math.Pi * 2.0 / float64(h)
for y := 0; y < h; y++ {
for x := 0; x < w; x++ {
u := math.Cos((float64(x) + offset) * scaleW)
v := math.Cos((float64(y) + offset) * scaleH)
j := math.Cos(offset * scaleW) // 2D - No Z
e := (u + v + j + 3.0) / 6.0
r, g, b := singleColorPlasmaFromFloatVal(palletteOffset+e, baseColor)
var rgb [3]byte
rgb[0] = r
rgb[1] = g
rgb[2] = b
grid[x][y] = rgb
}
}
return grid
}